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Equations relating the output signal of a dispersion analyzer and the energy distribution function
of the charged particles entering it are obtained and solved on the basis of an analysis of
the motion of charged particles in such analyzers. The influence of corrections on the
reconstruction of the energy distribution in comparison with the standard procedure is
considered. ©1997 American Institute of Physics.@S1063-7842~97!01806-0#
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Many modern methods for investigating solids and pl
mas are based on analysis of the energy spectra of cha
particles. Electrostatic and magnetic analyzers are emplo
in such investigations. The fact that the output signal of
analyzer conveys the shape of the energy spectrum of
particles with distortions raises the problem of reconstruct
the true spectrum of the particles from the output signa
the analyzer.

The problem of reconstructing the true distribution f
electrostatic analyzers was reduced in several papers~see, for
example, Ref. 1! to solving the convolution integral equatio

I ~W!5CE
0

1`

A~W2E! f ~E!dE, ~1!

whereI (W) is the output signal of the analyzer,f (E) is the
energy distribution function of the particles,A(W2E) is the
instrumental function of the analyzer,W is the tuning energy
of the analyzer, andC is a constant.

When the energy distribution~or the momentum distri-
bution for a magnetic analyzer! is reconstructed, the outpu
signal of the analyzerI (W) @or I (p)# is divided byW ~or
p, respectively!.2 The problem of reconstructing the true e
ergy distribution was reduced in Ref. 3 on the basis of
approximation of the experimental data for a concrete a
lyzer to the solution of an integral equation of the form

I ~W!5CE
0

1`

A~W/E! f ~E!dE. ~2!

A general solution of this equation was obtained in in
gral form, and it was also shown that the approximate so
tion of Eq. ~2! for a broad spectrum is obtained by dividin
the output signalI (W) of the analyzer byW. In Ref. 4 an
equation similar to Eq.~2! was also used on the basis of a
approximation of experimental data, and a solution was
tained in the form of a series. However, the question of wh
the equations of the former and latter types should be use
treat the experimental data remained open in the gen
case. The purpose of the present work is to attempt to re
struct the true distribution from the analyzer output signa
the general case.
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To obtain the equations of the trajectories of the partic
in an analyzer we use the approach described in Ref. 5,
pressing the particle velocityn in terms of the radius vecto
of the particleR and the coordinateS coinciding with its
trajectory

n5
dR

dt
5

dR

dS

dS

dt
5

dR

dS
n, ~3!

wheren is the absolute velocity of the particle.
Then, taking into account the equation of motion of

nonrelativistic charged particle in an electrostatic field

m
dn

dt
52qe¹U, ~4!

where U is the electric field potential, and expressing t
kinetic energy in terms of the total energyE0, after some
relatively simple transformations we obtain

2
d2R

dS2 S 12
qeU

E0
D2

dR

dS

d~qeU/E0!

dS
52¹S qeU

E0
D . ~5!

Similarly, in the case of a relativistic charged particle
a constant magnetic field, if we substitute Eq.~3! into the
equation of motion

d

dtS mn

A12n2/c2D 5
qe

c
~n3H!, ~6!

take into account that the kinetic energy of the particles d
not vary in the magnetic field (dn/dS50), and introduce the
vectorh5H/H, for the path equation we obtain

d2R

dS2 5
qeH

pc S dR

dS
3hD , ~7!

where p5 mn/A12n2/c2 is the magnitude of the momen
tum.

INSTRUMENTAL FUNCTION OF AN ANALYZER AND
TREATMENT OF MEASUREMENT DATA

Let us consider the motion of charged particles in
electrostatic analyzer. Let a particle enter the analyzer
point with the coordinates (h,j) ~the system of coordinate
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coincides with the plane of the entrance electrode! in the
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direction assigned by the anglesa and b with an energy
E5E0 /e, wheree is an elementary charge. The distributio
of the field in the analyzer is assigned by the potent
Ui , wherei 51, . . . ,n, on the electrodes relative to the e
trance electrode, which is at zero potential. At thenth or exit
electrode of the analyzer the particle is at a point with
coordinates (h1 ,j1) ~the coordinate system lies in the plan
of the exit electrode!.

The coordinates (h1 ,j1) are found by solving the equa
tion of motion ~3!. Since the trajectory of the particle@Eq.
~5!# remains unchanged as its energy and potential vary o
the entire space by the factorL, the coordinates (h1 ,j1)
remain unchanged whenE and Ui , where i 51, . . . ,n,
change simultaneously by the factorL. This condition holds
only if the energy and the potentials appear in the functi
of the coordinates (h1 ,j1) in the form of a ratio. Similarly, it
can be shown that the charge and the energy also appe
the form of a ratio.

To find the relation between the output signal of t
analyzer and the energy distribution function of the particl
we use the method described in Ref. 6. If the particles at
entrance to the analyzer have a distribution function w
respect to the coordinates of the cross section of the b
formed by the surface of the entrance diaphragm, the ang
and the energyf (h,j,a,b,E), the number of particles which
have an energy in the range fromE to E1dE and emerge in
the direction assigned by the anglesa and b into a solid-
angle elementdV from an elementdS0 of the entrance dia-
phragm area per unit time equals

d3I 5I 0f ~h,j,a,b,E!dVdS0dE, ~8!

where

I 05E E E d3I

dEdS0dV
dVdS0dE

is the number of particles passing through the hole in
entrance diaphragm per unit time.

To find the number of particlesI passing through the
hole in the exit diaphragm per unit time, Eq.~8! must be
integrated over all the trajectories passing through the hol
the exit electrode. For this purpose we express the anglea
andb in terms of the coordinates (h1 ,j1) of the coordinate
system of the exit diaphragm

a5aS h,j,h1 ,j1 ,
qU1

E
, . . . ,

qUn

E D ,

b5bS h,j,h1 ,j1 ,
qU1

E
, . . . ,

qUn

E D , ~9!

and substituting these expressions into~8!, we integrate over
the energy and the areas of the entrance and exit apertu

I 5I 0E
0

1`E
S0

E
S1

f S h,j,h1 ,j1 ,
qU1

E
, . . . ,

qUn

E
,ED

3J~a,b,h1 ,j1!sin a dS1dS0dE, ~10!

where
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S 1 1 E E D ]~h1 ,j1!

is the Jacobian of the transformation .
We assume that the energy distribution in the beam

ing analyzed does not depend on the distribution with resp
to the cross section and the angles

f ~h,j,a,b,E!5 f 1~h,j,a,b! f 2~E!. ~11!

Using such a function, we can represent expression~10!
in the form

I 5I 0E
0

1`

AS qU1

E
, . . . ,

qUn

E D f 2~E!dE, ~12!

where

AS qU1

E
, . . . ,

qUn

E D
5E

S0

E
S1

f 1S h,j,h1 ,j1 ,
qU1

E
, . . . ,

qUn

E D
3J~a,b,h1 ,j1!sin a dS1dS0 .

The function A(qU1 /E0 , . . . ,qUn /E0) is the instru-
mental function of the analyzer, since it expresses the dep
dence of the output signal of the analyzer on the electr
potentials for a monoenergetic beam of particles. It should
noted that the instrumental function of the analyzer will be
function of the ratios of the electrode potentials to the p
ticle energy, even if the condition of a one-to-one corresp
dence between the anglesa and b at the entrance to the
analyzer and the exit coordinates (h1 ,j1) is not satisfied,
since the instrumental function is the integral over all t
trajectories passing through the hole in the exit diaphrag
and each trajectory in the analyzer is a function of the ra
of the electrode potentials to the particle energy, for e
ample, when the beam is focused on a point.

It is not difficult to show that convolution equation~1! is
incompatible with Eq.~12! and is, thus, inapplicable to ana
lyzers operating in the spectrometer regime. In fact, if it
assumed that the instrumental function simultaneously sa
fies ~1! and ~12!, the condition

W2E5F~qU1 /E, . . . ,qUn /E! ~13!

must be satisfied, i.e., the difference between the tuning
ergy of the analyzer and the energy of the particles must b
function of the ratios between the electrode potentials
the energy. On the other hand, the tuning energyW of an
electrostatic analyzer should not depend on the energE
with which the particle enters the analyzer, in contradicti
with condition ~13!.

In order that the instrumental function of the analyz
would have the formA(W/E), when the energy of the par
ticles changes by a factor ofL, the electric fields must vary
by the same factor over the entire trajectory of the partic
This condition is strictly satisfied only if the similarity con
dition for the electric field holds in the entire space of t
analyzer. Therefore, in this case the potentials on the e
trodes should be linearly related:
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FIG. 1. Results of the reconstruction of an ener
distribution. a: solid curve — true distribution; dot
ted curve — distribution obtained by dividing th
output signal by the energy; dashed curve — dist
bution @from Eq. ~20! to within a correction associ-
ated with the second derivative# based on the known
output signal~dashed curve in Fig. 1b! and the in-
strumental function~solid curve in Fig. 1b! ~the full
width of the true energy distribution at half
maximum is equal to the full width of the instru
mental function at half-maximum!.
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U2

U1
5l2 ; . . . ;

Un

U1
5ln , ~14!

wherel2 , . . . ,ln are constants.
Then the tuning energy and the potential on one of

electrodes, in terms of which the current of the particles
the entrance to the analyzer is measured, will be related
the expression

W5kU1 , ~15!

wherek5const is the analyzer constant.
In this case the relation between the current at the a

lyzer exit and the energy distribution function of the partic
is described by the equation

I ~U1!5I 0E
0

1`

AS qU1

E
,l2 , . . . ,lnD f ~E!dE. ~16!

The solution of Eq.~16! for the energy distribution func
tion of the particles can be found in an integral form usi
the Mellin transform3

f ~kŬ!5
1

I 0

1

2p i Ex02 i •`

x01 i •` I x21

Ax21
~kŬ!2xdx, ~17!

where

I x215E
0

1`

I ~U1!U1
x22dU1 ,

Ax215E
0

1`

AS qU1

E D S U1

E D x22

d~U1 /E!. ~18!

The expression obtained is not convenient for pract
use; therefore, we find the solution of the equation in
form of a series. For this purpose, we assume thatI (U1) is
infinitely differentiable and can be expanded into a Tay
series in the vicinity of the pointŬ:

I ~U1!5 (
n50

1`
I ~n!~Ŭ !~U12Ŭ !n

n!
. ~19!

Substituting expression~19! into integral ~18! and as-
suming, for simplicity, thatŬ.0 andU1.0, for Eq. ~17!
we obtain
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f ~kŬ!5
1

I 0
(
n50

1`

I ~n!~Ŭ !Ŭn21
1

2p in!

3E
0

1`E
x02 i •`

x01 i •`~U1 /Ŭ21!n

Ax21k2 S U1

kUD x22

dxd~U1 /Ŭ !

or

f ~kŬ!5
1

I 0
(
n50

1`

BnI ~n!~Ŭ !Ŭn21, ~20!

whereI (n)(Ŭ) is thenth derivative of the current at the ana
lyzer exit with respect toŬ, and theBn are constants.

We express the coefficientsBn in terms of the moments
of the instrumental function. For this purpose, after expa
ing I (n)(Ŭ) into a Taylor series and substituting express
~20! into Eq. ~16!, we obtain the equation

I ~U1!5 (
n50

1`

(
m50

1`
BnCnm

m!kn1m21 I ~n1m!~U1!U1
n1m, ~21!

where

Cnm5E
0

1`

zn21~z2k!mA~q/z!dz. ~22!

Since Eq.~21! holds for any functionI (U1), the coeffi-
cient in front ofI (n1m)(U1) for n50 andm50 equals unity,
and the sum of the coefficients in front of the remaini
derivatives equals zero. Then

B05
1

kC00
, Bn52

1

Cn0
(
i 50

n21

Bi

Ci ~n2 i !

~n2 i !!
. ~23!

The analyzer constant can be expressed so as to sa
the conditionB150; in that case it equals

k5
C10

C00
. ~24!

Therefore, the correction associated with the first deri
tive I 8(U1) can be eliminated by adjusting the analyzer co
stant. This allows us to assume, in contrast to the res
obtained in Ref. 3, that the first derivative of the current h
little influence on the shape of the energy distribution. Fig
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FIG. 2. Dependence off max/f0max andD/DE on
DE /D instr , wheref max is the height of the recon-
structed spectrum,f 0max is the height of the true
distribution, D is the full width of the recon-
structed spectrum at half-maximum,DE width
of the true distribution, andD instr is the width of
the instrumental function: solid curve – with
consideration of the correction associated wi
the second derivative; dashed curve – for spe
tra obtained by simple division by the energy.
1 shows examples of the processing of the spectrum in a first
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approximation and with the correction associated with
second derivative of the current. The normal Gaussian di
bution was employed as a trial function for the true distrib
tion function. It can be concluded on the basis of the res
obtained~Fig. 2! that the correction associated with the se
ond derivative makes a significant contribution to the dis
bution function in the case in which the width of the tru
distribution function is of the order of the width of the in
strumental function. In this case the energy distribution
tained with the correction is considerably closer to the t
distribution than are the distributions obtained without it.
addition, it is not difficult to show that the distribution func
tion thus obtained satisfies the normalization condition.

Using the normalization condition forf (E), it is not dif-
ficult to show thatI (U1) tends to zero whenU1→0 and
U1→`. Taking this into account, we find that

E
0

1`

I ~n!~U1!U1
n21dU150, ~25!

wheren > 1.
Expression~25! makes it possible to compare the inte

sities of two currents with quasimonoenergetic energy dis
bution functions of the particles having a width of the ord
of the width of the instrumental function without refining th
form of the distribution function. It is noteworthy that
simple comparison of the current maxima at the analyzer
gives an incorrect result:

I 10

I 20
5

*0
1`I 1~U !/UdU

*0
1`I 2~U !/UdU

Þ
I 1max

I 2max
, ~26!

whereI 10 and I 20 are the particle currents at the entrance
the analyzer, andI 1max andI 2max are the maximum values o
the particle currentsI 1(U) and I 2(U) at the analyzer exit.

Let us now consider a magnetic analyzer of charged p
ticles operating in the spectrometer regime. Assuming
the magnetic field in the analyzer is created by magne
optical elements and that the strengths of fields created
these elements are linearly related, for a particle which
the coordinates (h,j) at the entrance diaphragm of the an
lyzer and emerges in the direction assigned by the anglea
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we obtain the coordinates of the particle at the exit d
phragm of the analyzer

h15h1~h,j,a,b,qH/p!, j15j1~h,j,a,b,qH/p!,
~27!

whereH is the magnetic field strength at an arbitrarily s
lected fixed point.

The distribution function of the particles with respect
the magnitude of the momentum, which does not depend
the distribution with respect to the angles and the cross
tion, and the number of particles passing through the hol
the entrance diaphragm per unit time are related by an
pression similar to the expression for electrostatic analyz

I ~H !5I 0E
0

1`

A~qH/p! f 2~p!dp. ~28!

The momentum corresponding to tuning of the analy
and the magnetic field strengthH are related by the expres
sion

p15kH. ~29!

For a distribution function whose value varies weak
across the width of the instrumental function, the appro
mate solution of Eq.~28! will have the form

f 2~kH!'
I ~H !

CI0H
, ~30!

whereC5*0
1`A(q/z)dz is a constant andz5p/H.

CONCLUSIONS

Let us briefly review the main results of this work.
1. It has been shown in this work that for all electrosta

analyzers operating in the spectrometer mode, the en
distribution function of the charged particles at the entran
to the analyzer and the number of particles passing thro
the aperture in the exit electrode per unit time depend on
ratio between the electrode potentials and the particle en
and are related by Eq.~12!. It should be noted that the ex
pressions~12! and ~16! obtained above for describing th
relationship between the current at the analyzer exit and

666V. A. Kurnaev and V. A. Urusov
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when the stray electrostatic fields caused by the actual ge
etry of the electrodes are taken into account.

2. A detailed analysis shows that the convolution eq
tion ~1! previously proposed1 for describing the relationship
between the particle current at the analyzer exit and the
ergy distribution function of the particles is not applicable
an analyzer operating in the spectrometer mode.

3. Under the condition of a linear relationship betwe
the potentials on the analyzer electrodes, the particle cur
at the analyzer exit and the energy distribution function
the particles are related by Eq.~2!, in which the instrumenta
function is a function of the ratio of the tuning energyW to
the particle energyE. For a magnetic analyzer operating
the spectrometer mode, the momentum distribution func
of the particles and the particle current at the analyzer
are related by an analogous equation~28! provided the fields
created by the magnetooptical elements are linearly rela

4. Solution~20! in the form of a series in derivatives o
the current at the analyzer exit, which was obtained for
arbitrary continuous energy distribution function of the p
ticles, and recurrence relations~23! for the coefficients in the
series permit the reconstruction of energy spectra wit
width of the order of the width of the instrumental functio

5. Since the distribution function of the beam with r
spect to the coordinates of the cross section formed by
entrance diaphragm and the angles appears in expre
~12! for the instrumental function, the monoenergetic parti
beam used to calibrate an analyzer must have a distribu
function with respect to the cross section and angles tha
close to the spectra which are to be measured by the
lyzer. For example, if the analyzer is intended for investig
ing particles reflected or emitted from a surface and the
face area ‘‘visible’’ to the analyzer is smaller than th
emission area, and the angular distribution function of
particles varies weakly within the angular aperture of
analyzer, it is best to employ a broad monoenergetic part
667 Tech. Phys. 42 (6), June 1997
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within the angular aperture of the analyzer to calibrate
latter.

6. Preliminary retardation of the particles is often used
improve the resolving power of a dispersion analyzer. A
rule, analyzers with preliminary retardation operate in tw
regimes:1 in one regime the retarding potential remains co
stant, and the spectrum is scanned by varying the pote
on the deflecting electrodes. One deficiency of this regim
that it is unsuitable for treating the results of measureme
of broad spectra. In the other regime the potential differe
on the deflecting electrodes remains constant, and the s
ning is performed by varying the retarding potential. O
deficiency of this regime is that the angular distribution fun
tion of the particles varies after the retardation system, m
ing the ensuing treatment of the spectra difficult. The de
ciencies just enumerated can be avoided by using an ana
operating in a regime in which the retarding potential and
potentials on the deflecting electrodes are linearly related
Eq. ~14!. The use of a retarding potential permits improv
ment of the resolving power of the analyzer. On the oth
hand, the particle current at the analyzer exit and the ene
distribution function are related by Eq.~16!, and thus the
treatment of the spectrum reduces, in a first approximat
to division of the signal by the energy.
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